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ELASTIC LOADING OF THICK=-WALLED HIGH PRESSURE CYLINDERS

by e EPAIN and B.VODAR

We consider a thick-walled cylinder submitted to uniformly distributed
internal and external pressures and a Uniformly distributed longitudinal
load and we cstablish the relations between these loads such that the cy-
linder does not undergo plastic deformation. For this purpose we use the
criteria of Von Mises and of Tresca as well as a linearized form of the
criterium of the intrinsic curve of Hohr-Caquot. We describe a graphic me=-
thod which allows the resolution of these problems in a more varied manner
than that of the calculations. Wr finish with several remarks on the condi=
tions and limits in the use of this method.
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A hollow cylinder of circular cross-section ( figure 1 ) _
is submitted to internal p, , external p, ed longitudinal p, unifornly
distributed pressures, and the limiting relations, i e , the linit in
which the vessel undergoes no plastic deformatiomn, between these quantities
are established..These relations will be referred to.as eclastic loading con~
ditions, (x)

(X) Throughout this paper we will use "conditions of elastic loading" for the
French "condition de portance élastique". A bettor expression might be "elastic
limit load",
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We will establish these relations for three criteria of plasticity :
the criterium of Von Mises ’ that of Hohr-Caquot 2 and finally, that of Tnms.
The woll lnown foruulas of Lené give the radihl(; circunferential Uy ,

and longitadinalG;’smaaea as functions of E" P & and?tin the following form $

G’f.zﬁé?[" Z& ] Pe&‘&»‘ ‘ZL ]s
02:&2:._ [1"'&1 cﬁt Z‘*’]

==k

vhere k = .ktbe ratio of external radius to the internmal radius of the
cylinder, tituting these expressions into the corresponding oriteria we
obtain the desired conditions of elastic loading.
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On expressing the principal stresses as functions of the pressures t"Pl’PO
in the relation of Von Mises, given by (Gi' o 0'6)‘4»(0;-. J)’-’){Oj’-ﬁkl (T:;
we ommmitimotomuommminctothhmtoﬁm

Bl B (-n) i tent =2 B pin

2
+pE (A7) +2p, p(&1) ~2 p, p, KA r)]<z a3
where Jiis tue elastic limit of the material for pure tension. The left hand
membey of this expression being maximum for I"=I'C it is seen that plastic
deformations will occur, either first at the internal diameter of the cylinder

whatever might be the relative values of P'; and Pe s Or simultaneously in the
entire thickness of the cylinder for the particular case P': -Pe =0
wip, =% 05,

If we now take the case where a plastic deicrmation is possible, we
should write I’ =["¢ and the inequality in the above equation becomes equa-
lity. On tho pressure space P" ’ Pf ’ Pe s the surface describeaby this equality
is an elliptic cylinder with its axis pointing in the direction ( 7,7, 7, ).
The elliptic cross-section varies both in dimension and orientation with ratio

= ‘Z.e + This surface has meaning only as long as Pt' and Pe are positive,

[ &
'hil‘ o= e
R 11‘7@‘-:‘2 8
may be poaitive, negative or , depending on the value and sign ( tension

or compression ) of the longitudinal load L. ‘
In order to study this surfuce, we transfer from the systen of axes Pe) Pe)
R’ to the system V,W, Z ( both are orthonormal )’V and W being respectively,
coincident with the minor and major axes of the ellipse of the normal cross-section,
vhile 2, paralld) to the gemerating line of the slliptic cylinder is inclined at
equal angles Lo P:-.PC.FQ-.

F

——

( 5 ) Contribution 21'dtude de la rdsistance des cylindres épais elasig-~plastiques —
EPAIN R. Thése Doct. d'Université Paris 1961
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« The dimensions of the ellipse of the normal cross-section

are given DY ¢
Binor axis _ o (Mm-17)
2
\/4 M- M+1+\[EM*+10M -2 M +1
major axis _ Ga (M~-1)

2

V4N‘—/V+1 Vt/y¢ +10M3 2M+1
while its orientation relative to the projections P </ P’ P Pe of the axes

R p,,pe onbthe plane JV perpendicular to 2 is determined by the
follovinc relations 3
N N AR | ;
ta. = : P with U = angle V, P
¥\ [ i (3] Y mes
vhere Y4/ — 3M3(M-1) +X\ y Wy = =)+ :
Vi 3MAM-1)-MX W, 3"1‘(/‘1-!) -MXa

W MUK ey BMU(Mo (M)
Y T3MI(M-1)T3M) M, Wi T 3MY( M=) T-BM+)Nx

|=4N‘-M+1.":V7N"+IOM’-2M+I y M=AL

For k = ljcorresponding to a hypothekical oylindor of zero thickness ,
the ellipse is reduced to a line (mom-fm)uoncp, e« Fork = o©
corresponding to a cylinder of infinite thickness or to a capillary tube, the
ellipse has the dimensions indicated in the figure 2.
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Now, if in the pressure space we represent tne load by the vector —5;
with components P& ’PC ’ Pc P we can make the following remarks $
1) plastic flow is only posaible if P lies on the elliptic cylinder;
2) since the hydrostatic load is represented by a vector parallel to %,
only the component of OF in the jlane TT is necessary for detemining whether
the material does or does not remain elastic.

3) The ellipse corresponding to k = ©© having a finite dimension confims the
known result that a finite state of load is sufficient to create a plastic defor-
mation in a cylinder od infinite thickness.

. The second remark leads to the establishment of a graphic method permitting
the resolution of two types of  probless relative to elastic loading. On the first
graph A three equidistant axes P:. s Pé » F,& are traced as well as the axes V
for different values of K. For these same values one traces om transparent paper
a series of graphs B representinsthe corresponding ellipses. The number of these
graphs is limited both by the allowed interpolations and the fact that k = 4
constitutes a limiting value in practice. Finally one obtains a new simplification
by scaling the designs to 3/2 and on letting Oao = 1.

]

The first problem is the following 3 given k and (5 determine wigther
this cylinder remains elastic under the loads P, , Pe ’ P . one supompi-:. \
the graphs A en B making the axes V coincide and one traces the projection of OP
on the plane TT whose components onto PL ’Pé " F; are respectively P-‘h N

,%. The cylinder does or does not remain elastic according to whither P -
%n.msu- ( see figure 3 ) or on the ellipse.

In particular one finds the following well-lknown result
the maximum hﬁtﬂm P‘,‘ that a cylinder can withstand elastically
in the case where F‘ is zero is equal to @

% (4.. 4/“_) for a closed cylinder,

%-i ( £ ‘Vﬁ*)/m for an open cylinder,

GT-.; (4- ‘yit)/v,'.’. 4_23}%5-4 for a plane stram condition.
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The second type of problem can be stated as " given a cylinder characterie
zed by k and g and submitted to an external pressure P determine Pﬁ
sucn that P will be maximum and find this value". One begins as before, then one
traces oca%amA peralled to P/ and tangent to the ellipse. One then de=
duces that PC = Oo CD and F U DP. ( see figure 4 ).

The determin.tion of the extrema ca be done by the preceding method and this
allows one to obtain the results shown in the table below.

=Fe+{-E) AR e L
= 2,03 s R b &.____%(3,,;.3)4_&
n=&+%m~ | =k
o= b+ % (%) | h=h+3

=+ 35 2 =P g5 )
Galie o =k 8




For simplification we utilize a linearized intrinsic curve obtained by
drawing the tangents D to the circles of diameters U and U¢ where Ug and Qf
are the absolute values of the elastic limits for pure tension and pure compression
( see figure 5 ).

There is plastic flow at a point in the wall of the cylinder if the local
values of the congtraints are such that the circle of Mohr constructed by the major
G;‘ and the minor O stresses is tangent to or cuts the lines D .

In the limiting case where this circle is tangent to the lines D the.
figure 5.shows that one has 3
raddus of the Mohr circle = 0__'.1%0:2‘ = l:cos‘x -— 0-_;.1_‘;-_0-‘.”‘. SINX o

where Mg_n ropresents the abscissa of the center of this circle 4
while Cg & 0'['3« + b are the squationsrepresenting the tangents D,
a'c,-c'o
On not that one can write SN o ———
" To +0e

bcoso(gg.f.gs. in the preceding equation, the necessary condition that the
cylinder rem&a eEatic is expressed bry the inequality

Adﬂording to the relative magnitudes of the principal stresses this equa-
tion is written in six different ways ¢

0;—%0% < Qo , -For Je >902>03 ,

Jo — 2—-;-0.‘2- <G , #r °§>U'5>°7&,

B-RL%R, for B>RO>R,

the three other forms being obtained by perautation of Uy and Ty

p -
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When one expresses the principal stresses as a function of the
1dads in the ﬂu‘om inequalities there appears on the left hand side

the cxpression .55_ which is always positive since (B_ DOy
-7

for these three cases. 'me result of this circumstance is that these expressions
become mim for t = (; « This signifies that, just as for the criterium of Yon
)ueen, plastic flow begins at the internal diameter.

In the linit and with T = 2'-,,' these inequalities above are written in
the following form @

2’1-%". Péi'g‘—+£Pz=G: for Go>0x> 03

—B+?FE_P‘.:0? for O3> Tp > Ox
"P‘%@L ey 2;&, —p =0 for G>G> T
PR+ he il for >G>
._p,+ =P =0- fer O >0 > T3

The equations represent six planes in the spuce P‘ +Pe Pe -

ienouuoktodeteumotheoontoursrormdtvthoirmo“ontneplmn
perpeudiculartotheliup‘gpegpe.
In order to do this we will utilize a newcoordinate system V, W, Z where the axis
4 coinoides with tho line P =P, =P while i is at the imtorseotion of the
,lmfomedhytheooommmpt andp,andthoplaneﬁporpendimlartoan
passing through the origin. Under these conditione the new orthonommal vectors are
written as functions of the old coomiinate system in the following way
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Ve Y +Heh - YR
Ve-Yzl + %R
EE 4/V3 T’:— J'/V-iﬁ +5 Fe.

Inversely the old orthonormal vectou_. =y and—. are given in
v P2 Fg Yo et

- %V~ Ya¥ + fn%
"e YV + s %
Bo=-%eV + eV + /%

It follows that the equations of the six planes described above are
written in the new coordinate system as indicated below ( for Je :t Je )i

= V3 3Ry, 1-0/0 :
Gy ¥ o307 Bt W+t sl ,_V—Z r+20‘/cz

o 4l T & gs Ve
W ﬁ%&%ﬁ* =)W V‘2+,mm

__1=0s/0c
: _.ZE C a2 +1 (e
e = F‘TW oAk Z z—ﬁ_«r‘/o—

' - — ‘-“" Jo

o Ve +']W+VTZ+7_03’E/'J:
' i"' 0.0

(W=~ +20e /g2 W+ 1+2 0‘:_/0-; sz 7+20'3/o"

the new gysten by 3

Now on cutting these planes by the plane 2 = constant we obtain six lines

which form the desired contour,
One notes that the slopes of these lines vary with the ratio 0:/0'2
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and k =%5— (except for the lines 3 and 3' ).

2
Further their ordinabe intersections are functions of (Jo /07: and
in particular, of Z -%—(p‘ +P[ "’Pe) : This signifies
that,contrary to the criterium of Mises, the extent of the elastic domain in the
present case is no longer independant of the hydrosts “mc‘u oad vector.

One can further note that with the system of -axes V, W, Z, the V axis coincides

with the projection p" of P( ontb%h’nm 7T . The figure 6 shows how one
can easily trace the contour corresponding to given values of the constants

d5, 0, k, &d of the variable Z. The fact that the lines 1 and 3' besides 3

and 1" intemectonP{’ whilo the lines 1' and 2' as well as 1 and 2 and also

3 and 3' intersect on Pe reduces from 12 to 6 the number of coordinates to be

calculated.

how
The figure 7 showd fthe elastic domain enlarges as Z increases, the
lines forming the contour remaining paralle] to themselves,

The graphic method described in the preceding paragraph is also valid
in this case. It is slightly complicated by the fact that the dimensions of the
elastic zone must be calculated as a function of Z; but on the other hand it is
conaidemb]y ainpliﬁcd by the fact that them'ml'm'ﬁmd relative to

theaxosﬂ /% Pe

letting (Jo = (¢ the lines D of the plane & , 0  become
parallel and the criterium of Mohr-Caquot reduces to that of Tresca. The equa=-

tions of the six preceding planes are nov 3 -

‘K_l_éj— ;f: +P£=:ta:’

p-p =0 Lot

_...P[-|-P‘.-.=: = Us .



In the space V, W, Z defined in the preceding section the equations of these
planes are reduced to 3

1) V_ " 18 .ig__—""' W ==+ .3.0:)
1) V3~ &2

oML T g
o W"*TZT o

3) _'_. i ATE O .
5 V+ W +V3_

V3

Since the coordinate Z no longer appears in these expressions, these
planes are nommal to the plane JT , They fom an irregular hexagonal prism
insoribed in the elliptic cylinder of Mises. The magnitude of the elastic demain
h'mmh.un\ﬂwoueof‘lum. independant of the hydrostatic component
of the load vector. The intersection of this prism with the plane 7T gives the
contour of the elastic domain. The figure 8 shows that this contour can be tre-
odmamm".momrmtofwmwhmm
with respect to the origine.

For k = 3, side 1 of the hexagon alnost comgides with the perpendicular to P:
(the position of 1 in the figure corresponding to k = OO ). This shows that
increasing k above the value 3 adds only a very small gain to the elastic loe-
diu.hr'knl,ﬂwmumumlmp; ( zero surface ).

The study of the maxima allows one to rediscover the following well-
knmmltlfwaamp there exisls, contrary to the criterium of Mises
mhfmtomr“ ofP forﬂuohp is maximum and equal to
%—_(1- ) s mmummmtmtmmtammw
dl.‘:ar el ‘bP coincides with side 2 of the hexagon. The extremities of
mlwmhnwmu.mmo-doylmmcw.mh
plane strain condition end respectively at the points a, b, and ¢ of the figure 8,




In the use of these methods we have hpu.oiﬂrr assumed that the loads
increase proportional to the same parameter. This condition is automatically satis-
fied for the cases of open and closed cylinders as well as for a cylinder in plane

o) strain condition., However, it is no longer true for the case of shrink fits, where
one applies first p  followed them by p . + The nethod prosented here is nevertho-
‘ less always valid on the condition that it is utilized in two steps.

3 ' In that which concerns the limits of validity of these methods we can
nbthofolmm For a hydrostatic load Pﬂ R."P[“Pe’

of large .aum the relation strese-strain should no longer be linear. in other
mm.mhwmthoumu.mwxofwm on the comprese
gibility of pure iron shows that already at 12,000 Atmospheres there exists amall
divergences from linearity.

Further if the deformations become large the relations between the components of
the deformation tensor and the spatial derivatives of the components of the dis-
placements become quadratic. At this point, the Lamd equations which are formed
from the linear forms at these relations are no longer valid, and the relations |
of elastic loading, which are derived from them, must be entirely reconsidered.
Thus, oven, if the criterium of plasticity used, as in the case for the criteria
of Hises, Mohr-Caquot and Tresca, implies the condition that a hydrostatic cons-
traint does not cause plastic deformation, it does not automatically result from
Nothtahrdmmthhdp‘ P"_:Pt—:.‘:e protects the cylinder
from all plastic flow.

On the other hand, if the loads though very large are not isotropic
R ( R #P( # Pe ) one can think that a'plastie’law governs the 'y -
A : tion beyond the elastic regime of Hookes law. On other words, there is no
phase o!' a non / law, consequently, the relations of elastie loading should
e remain valide ooy @

A= T 2 T Eo AL 2 e ®

(6) The Physics of High Pressure Bridgman P.W, G. Bell & Sons London 2nd Bd. 1949
Ay Pe 1“.
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